Synthesis of 2,3-Dihydrobenzofurans by Mn(OAc)3-Based Oxidative Cycloaddition of 2-Cyclohexenones with Alkenes. Synthesis of $(\pm$)-Conocarpan

Barry B. Snider,* Luning Han, and Chaoyu Xie
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254-9110

Received May 13, $1997{ }^{*}$

Abstract

Oxidative cycloaddition of a 2-cyclonexenone or α-tetralone and an alkene with dried $\mathrm{Mn}(\mathrm{OAc})_{3}$ in benzene at $80-140^{\circ} \mathrm{C}$ provides a general route to dihydrobenzofurans 15 and dihydronaphthofurans 17. Although the yields are modest, this one-pot reaction provides simple access to these compounds, which have previously been prepared by multistep routes. Oxidative cycloaddition of 2-cyclohexenones with β-methylstyrenes provides a new route to benzofuranoid neolignans, which was applied to the synthesis of conocarpan (22). The formation of 2-acetoxyhexanedioic acids 27 and 47 from acetoxylation of 2-cyclohexenones in HOAc, but not in benzene, opens up a new class of $\mathrm{Mn}(\mathrm{OAc})_{3}$ reactions and explains Watt and Demir's discovery that much higher yields of α^{\prime}-acetoxy enones are obtained in benzene than in HOAc.

In 1976, Williams and Hunter reported that Mn$(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ oxidation of enones in HOAC at reflux affords 6-35\% of α^{\prime}-acetoxy enones. ${ }^{1,2}$ In a series of papers initiated in 1984, Watt, Demir, and co-workers reported that using $\mathrm{Mn}(\mathrm{OAc})_{3}$ dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ in benzene at reflux for 1 h to 2 d improves the yields of α^{\prime} acetoxylation to $50-90 \% .^{3}$ These reactions proceed by kinetic enolization of 2-cyclohexenone (la) to give $\mathrm{Mn}(\mathrm{III})$ enolate 2a, which loses $\mathrm{Mn}(\mathrm{II})$ to give α^{\prime}-keto radical 3a, which is oxidized by a second equivalent of $\mathrm{Mn}(\mathrm{OAc})_{3}$ to give α^{\prime}-acetoxy enone 4a. No explanation was provided for the vastly improved yields obtained in benzene.

We found that intramolecular trapping of the α^{\prime}-keto radicals obtained from cyclohexenones by suitably situated double bonds is much faster than acetoxylation, affording good yields of bicyclic dienones in favorable cases. ${ }^{4}$ F or instance, oxidative cyclization of 5 with 5 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2}$ in benzene at reflux for 40 h affords 61% of 6 as a 3.4:1 E / Z mixture. We therefore decided to examine the intermolecular reactions of cyclohexenones and alkenes.

$\xrightarrow[\substack{\text { benzene } \\ 80^{\circ} \mathrm{C}, 40 \mathrm{~h}}]{\substack{\mathrm{Mn}(\mathrm{OAc})_{3} \\ \mathrm{Cu}(\mathrm{OAc})_{2}}}$

[^0]
Results and Discussion

Oxidative Cycloadditions in Benzene. To our surprise, we found that oxidative addition of 2-cyclohexenones 1a-e with methylenecyclohexane (7a) in benzene at $80{ }^{\circ} \mathrm{C}$ for 3 d using $\mathrm{Mn}(\mathrm{OAc})_{3}$ dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ in vacuum as described by Watt affords 25-42\% of dihydrobenzofurans 15aa-ea and 0-18\% of 6-(1-cyclohex-enylmethyl)-2-cyclohexenones 12aa-ea (the first letter corresponds to the 2-cyclohexenone ($\mathbf{l} \mathbf{a}-\mathbf{g}$) and the second to the alkene 7a-c or 19ab). Grisan (15aa), so named because it contains the griseofulvin skeleton, has been prepared twice by multistep routes ${ }^{5}$ and is now available in a single step. No monomeric products are formed from 1a and 1-octene under these reaction conditions.

The following mechanistic scheme is consistent with these results. Oxidation of cyclohexenone $\mathbf{1}$ will form α^{\prime} keto radical 3. Addition of radical 3 to methylenecyclohexane ($\mathbf{7 a}$) will give radical $\mathbf{8}$, which is tertiary and is therefore readily oxidized by $\mathrm{Mn}(\mathrm{OAc})_{3}$ to cation $11 .{ }^{2}$ Loss of a proton from cation 11 will give 2-alkenyl-2-cyclohexenone 12. Cyclization of $\mathbf{1 1}$ will give bicyclic cation 10. Loss of a proton from $\mathbf{1 0}$ will give tetrahydrobenzofuran 9 or a double bond position isomer. Electron-rich double bonds are oxidized to radical cations by Mn $(\mathrm{OAc})_{3}{ }^{6}$ Therefore dienyl ether 9 should be oxidized to cation radical 13, which should lose a proton to give radical 14. Further oxidation will give a cation that will lose a proton to give dihydrobenzofuran 15. We confirmed that tetrahydrobenzofurans are oxidized to dihydrobenzofurans $\mathbf{1 5}$ by $\mathrm{Mn}(\mathrm{OAc})_{3}$. Birch reduction ${ }^{7}$ of 2,3-dihydro-3,3-dimethylbenzofuran (15ac) ${ }^{8}$ with Li in NH_{3}, EtOH, and ether provides >90\% of 2,3,4,7-tetrahydro-3,3-dimethylbenzofuran. Oxidation of the tetrahydrobenzofuran with $\mathrm{Mn}(\mathrm{OAc})_{3}$ in benzene at $80^{\circ} \mathrm{C}$ for 12 h affords 15ac ${ }^{6}$ in good yield, thereby establishing that

[^1]S0022-3263(97)00850-5 CCC: \$14.00

tetrahydrobenzofurans are competent intermediates in the formation of $\mathbf{1 5}$ from 1.

Remarkably, oxidative cycloaddition of Hagemann's ester (1d) with 7a for 3 d affords 25% (50% based on recovered 1d) of 6-methyldihydrobenzofuran-5-carboxylate 15da and 0% of alkenyl enone 12da. The formation of 15da indicates that loss of the α^{\prime}-proton occurs despite the fact that the γ-proton is several orders of magnitude more acidic due to the presence of the ester group (see eq 1) and is lost exclusively in all other reactions of 1d. The selective loss of the α^{\prime}-proton from 1d provides clear evidence that $\mathrm{Mn}(\mathrm{III})$ enolate $\mathbf{2 d}$ is formed by $\mathrm{Mn}(\mathrm{OAC})_{3^{-}}$ assisted kinetic enolization rather than reaction of the enol tautomer with $\mathrm{Mn}(\mathrm{OAc})_{3}$.

The analogous oxidative cyclization of α-tetralone(16) with an alkene should give dihydronaphthofuran 17. As expected, reaction of α-tetralone (16) and methylenecyclohexane (7a) in benzene with dried $\mathrm{Mn}(\mathrm{OAc})_{3}$ at 80 ${ }^{\circ} \mathrm{C}$ for 3 d yields the desired dihydronaphthofuran 17a (45\%) and alkenyltetralone 18a (18\%) as the only products, indicating that α-tetral one behaves analogously to cyclohexenones in these oxidative cycloadditions, providing a general route to dihydronaphthofurans.
Synthesis of Dihydrobenzofuran Neolignans. 3-M ethyl-2-aryldihydrobenzofuran neolignan natural products possess a wide variety of antibacterial, cytotoxic, antiproliferative, immunosuppressive, and insecticidal activities. For instance, conocarpan (22) ${ }^{9-11}$ is toxic to the Iarvae of the European corn borer at $10 \mu \mathrm{~g} / \mathrm{mL} .{ }^{11}$ These neolignans have been prepared by acid-catalyzed

cycloaddition reactions of styrenes and quinone monoketals, abnormal Claisen rearrangements of phenyl allyl ethers, Lewis acid-catalyzed cycloadditions of benzoquinones with styrenes, oxidative cycloaddition of p methoxyphenols with electron-rich styrenes with Phl(OTFA) ${ }_{2}$, and Lewis acid-promoted reactions of styrenes with N -(phenylsulfonyl)-1,4-benzoquinone monoimines. ${ }^{12,13}$

Oxidative cycloaddition of 2-cyclohexenone (1a) with β-methylstyrene (19a) in benzene for 3 d at $80^{\circ} \mathrm{C}$ affords 18% of the desired 2,3-dihydro-3-methyl-2-phenylbenzofuran (20aa) ${ }^{14}$ as a $93: 7$ trans/cis mixture and 2% of cinnamyl acetate. The methyl group in the minor cis isomer of 20aa is shielded by the phenyl group and resonates at $\delta 0.81$ as compared with $\delta 1.43$ in the major trans isomer of 20aa; similarly, the methine proton in the minor cis isomer of 20aa resonates at $\delta 5.81$ as compared with 5.16 in the major trans isomer of 20aa. ${ }^{14}$

We were concerned about the scope of this reaction with electron-rich β-methylstyrenes because anethole is known to be oxidized to the radical cation by $\mathrm{Mn}(\mathrm{OAc})_{3}{ }^{6 a}$ Fortunately, oxidative cycloaddition of 2-cyclohexenone (1a) with anethole (19b) and 4 equiv of dried $\mathrm{Mn}(\mathrm{OAc})_{3}$ in benzene in a sealed tube at $140{ }^{\circ} \mathrm{C}$ for 2 d provides

[^2]31\% of 2,3-dihydro-2-(4-methoxyphenyl)-3-methylbenzofuran (20ab) as a 49:1 trans/cis mixture, and only 4% of the cinnamyl acetate, indicating that 2-cyclohexenone is oxidized more rapidly than anethole under these conditions.

We then turned our attention to the preparation of a suitably substituted 2-cyclohexenone for conocarpan synthesis. 4-Allyl-2-cyclohexenone (1f) ${ }^{15}$ gives a complex mixture of products since addition can occur inter- or intramolecularly to the allyl group. ${ }^{4}$ Alkylation of the lithium enolate of 3-ethoxy-2-cyclohexenone with 1-chloro-3-iodopropane in THF containing HMPA followed by LAH reduction of the crude product and hydrolysis with HCl provides 52\% of 4-(3-chloropropyl)-2-cyclohexenone ($\mathbf{1 g}$). ${ }^{15}$ Oxidative cycloaddition of $\mathbf{1 g}$ with anethole (19b) in benzene at $110{ }^{\circ} \mathrm{C}$ for 1.5 d provides 25% of the desired adduct 5-(3-chloropropyl)-2,3-dihydro-2-(4-methoxyphe-nyl)-3-methylbenzofuran (20gb) as a 50:1 trans/cis mixture, 32% of recovered $\mathbf{1 g}$, and 31% of recovered anethole as the only products. Elimination of HCl from $\mathbf{2 0 g b}$ with potassium tert-butoxide in THF at reflux, ${ }^{16}$ followed by evaporation of the THF and further heating to effect conjugation of the double bond, ${ }^{17}$ yields 92% of $2,3-$ dihydro-2-(4-methoxyphenyl)-3-methyl-5-((1E)-propenyl)benzofuran (21). Demethylation of 21 with LiPPh_{2} in THF ${ }^{18}$ provides 84% of conocarpan (22) with spectral data identical to those reported. ${ }^{9-11}$

Oxidative Cycloadditions in Acetic Acid. Although Watt and Demir obtained much higher yields of α^{\prime}-acetoxy enones with dried $\mathrm{Mn}(\mathrm{OAc})_{3}$ in benzene than in acetic acid, the reactions are much slower in benzene. Since our intramolecular cydizations generally proceeded faster and in equally good yield in AcOH , we decided to investigate dihydrobenzofuran formation in AcOH . Oxidation of 2-cyclohexenone (1a) as a $0.1-0.2 \mathrm{M}$ solution in HOAc containing 2 equiv of methylenecyd ohexane (7a) with 4 equiv of $\mathrm{Mn}(\mathrm{OAC})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ at $80^{\circ} \mathrm{C}$ for 1 d affords 25% of grisan (15aa), ${ }^{5} 2 \%$ of dihydrobenzofuran-3-yl acetate 26aa, 4\% of di hydrobenzofuran-7-yl acetate 33aa, and traces of 2-(1-cyclohexenylmethyl)-2-cyclohexenone (38aa). The yield of 15aa is much lower in acetic acid than in benzene, no 12aa is formed, and minor products 26aa, 33aa, and 38aa, which are not formed at all in benzene, are isolated in low yield, indicating that the solvent profoundly influences the course of these radical cyclizations.

The successful oxidative cycloaddition of 1a with 1-octene ($\mathbf{7 b}$) in acetic acid, but not in benzene, provides further evidence of significant solvent effects. Oxidation of 2-cyclohexenone (1a) with 1.5 equiv of 1-octene ($\mathbf{7 b}$) and 4 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in AcOH at $80^{\circ} \mathrm{C}$ for 1 d affords 24% of 2,3-dihydrobenzofuran (15ab), 27\% of 6 -acetoxy-2-cyclohexenone (4a), and a trace of dihy-drobenzofuran-7-yl acetate (33ab) and 2-(2-octenyl)-2cycl ohexenone (38ab). Acetoxy enone 4a is formed with 1-octene but not with the more nucleophilic methylenecycl ohexane (7a), which reacts with the electrophilic α^{\prime} keto radical 3a more rapidly than 1-octene does.

Since secondary radicals cannot be oxidized to cations by $\mathrm{Mn}(\mathrm{OAc})_{3}$, the successful oxidative cycloaddition with 1-octene in acetic acid indicates that secondary radical

[^3]

23ab cyclizes to radical 24ab, which is then oxidized to cation 25ab, which reacts to give the dihydrobenzofuran as indicated above for the analogous cation 10. The conversion of $\mathbf{2 3}$ to $\mathbf{2 5}$ is well-precedented in the oxidation of secondary γ-carboxy radicals to lactones by $\mathrm{Mn}(\mathrm{OAc})_{3}{ }^{2}$ The formation of 6-alkenyl-2-cyclohexenone $\mathbf{1 2}$ in much greater yield in benzene than in HOAc is consistent with exclusive oxidation of tertiary radical $\mathbf{8}$ to cation $\mathbf{1 1}$ in benzene, while in HOAc radical $\mathbf{8}$ (23) mainly cyclizes to radical 24 prior to oxidation. The failure to obtain dihydrobenzofuran 15ab in benzene indicates that either cyclization of radical 23ab to give radical 24ab or oxidation of radical 24ab to provide cation 25ab does not occur in benzene.

Similar oxidative cycloaddition of 2-cyclohexenone (1a) with excess isobutene (7c) provides 22\% of 2,3-dihydro-2,2-dimethylbenzofuran (15ac), ${ }^{8} 3 \%$ of 2,3-dihydro-2,2-dimethylbenzofuran-3-yl acetate (26ac), ${ }^{19} 6 \%$ of $2,3-$ dihydro-2,2-dimethylbenzofuran-7-yl acetate (33ac), and 9\% of 2-(2-methyl-2-propenyl)-2-cyclohexenone (38ac). The structure of 33ac was confirmed by hydrolysis to the phenol, which is identical to a commercially available sample. Low yields of products are obtained from 1-octene and substituted 2-cyclohexenones $\mathbf{1 b}-\mathbf{e}$, and from 2-cyclohexenone (1a) and 1-methylcyclohexene. Complex mixtures and polymer are obtained from 7a and 2-methylcyclopentenone, 3-methylcyclopentenone, mesityl oxide, or 1-acetylcyclohexene, indicating the reaction is synthetically useful only with 2-cyclohexenones that lead to dihydrobenzofurans.

The formation of dihydrobenzofuran-3-yl acetate $\mathbf{2 6}$ is easily accounted for by benzylic oxidation of dihydrobenzofuran 15, which occurs in acetic acid, but not in benzene. As expected, benzylic oxidation of 15aa with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in HOAc at $80^{\circ} \mathrm{C}$ for 18 h provides 99% of 26aa. The mechanism outlined above for the oxidative cycloaddition cannot account for the formation of minor, but significant, amounts of dihydrobenzofuran-7-yl acetate 33 or 2-alkenyl-2-cycl ohexenone 38.

The lack of regioselectivity in the oxidative cycloaddition of 5-methylcycl ohexenone (1e) with $\mathbf{7 a}$ in acetic acid provides further evidence that the mechanism in acetic acid is much more complicated than in benzene. We obtained an unexpectedly complex mixture of products containing 4\% of di hydro-4-methylbenzofuran 15ea, 2\% of dihydro-4-methylbenzofuran-7-yl acetate 33ea, 3\% of 38ea, al ong with 4\% of di hydro-6-methylbenzofuran 40ea (15ba), which was obtained from 3-methylcycl ohexenone

[^4](1b) in benzene, and 11% of dihydro-6-methyl benzofuran-$3-\mathrm{yl}$ acetate 41ea. The formation of 40ea and 41ea from $\mathbf{l e}$ indicates that addition of $\mathbf{7 a}$ to $\mathbf{1 e}$ is occurring at both the α - and α^{\prime}-positions. However, oxidation of 5-methyl-2-cyclohexenone (le) with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in HOAc gives 44% of 6 -acetoxy-5-methyl-2-cyclohexenone (4e) as the only organic soluble product, suggesting incorrectly that enolization at the α^{\prime}-carbon is the only reaction.

The crucial observation entailed examination of the aqueous layer from the workup of the oxidation of $\mathbf{1 e}$. Acidification and extraction with EtOAc yields 20\% of a 4:1 mixture of 2-acetoxy-4-methylhexanedioic acids (27a and 27b), which was treated with diazomethane to give a 4:1 mixture of dimethyl 2-acetoxy-4-methylhexanedioates (28a and 28b). The stereochemical assignment follows from the absorption of CHOAc, which occurs as a dd, J $=10.5,3.5 \mathrm{~Hz}$, in the major isomer and a dd, J = $8.1,5.5 \mathrm{~Hz}$, in the minor isomer. The more disparate coupling constants of the major diastereomer isomer indicate that it exists in one conformation to a greater extent than the minor diastereomer does. The major
diastereomer 27a should have a single preferred conformation with the larger $\mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ substituents extended and the smaller acetate and methyl groups offset as shown in the left structure. The minor diastereomer 27b is a mixture of two conformers so that the two coupling constants are 8.1 and 5.5 Hz . The NMR spectra of the diastereomers of dimethyl 4-(benzyloxy)-2-acetoxyhexanedioate show similar differences. ${ }^{20}$ Similarly, oxidation of $\mathbf{1 a}$ affords 22% of $\mathbf{4 a}$ and 21% of 2-acetoxyhexanedioic acid (47).

The formation of $\mathbf{2 7}$ suggests that $\mathbf{1 e}$ also reacts by conjugate addition of acetate to give $\mathrm{Mn}(\mathrm{III})$ enolate 29. Loss of $\mathrm{Mn}(\mathrm{II})$ will give α-keto radical 32 , which can react with $\mathrm{Mn}(\mathrm{OAc})_{3}$ to give 2,3-diacetoxycycl ohexanone (30). Further oxidation will give acetoxycydohexanedione(31), which will be oxidatively cleaved to give diacid 27. Alternatively, elimination of an acetate from $\mathbf{3 0}$ will give 2-acetoxy-2-cyclohexenone 34, which could undergo conjugate addition of acetate and oxidation to give 3-acetoxy-1,2-cyclohexanedione 31. The formation of diacid 27a as the major diastereomer is consistent with this scheme since conjugate addition of acetate to either $\mathbf{1 e}$ or 34 should occur predominantly by axial attack from the α-face.

Reaction of α-keto radical 32 with 7a will lead to tertiary radical 36 , which will be oxidized to give cation 37. Loss of a proton and elimination of the β-acetoxy group will give 2-alkenyl-2-cyclohexenone 38ea. Cyclization of radical 36 and oxidation will give cation 39, which will lose a proton and HOAc to give a tetrahydrobenzofuran that will be oxidized to dihydro-6-methylbenzofuran 40ea. Dihydro-4-methylbenzofuran-7-yl acetate 33ea can be formed by α^{\prime}-enolization of 34 to give radical 35, which should react with 7a to give 33ea analogously to the conversion of $\mathbf{3}$ to $\mathbf{1 5}$ discussed above. The formation of dihydrobenzofuran-7-yl acetate 33 from 2-cyclohexenone (1a) and 5-methyl-2-cyclohexenone(1e), but not from 3-substituted 2-cyclohexenones $\mathbf{1 b}-\mathbf{d}$, is consistent with this mechanism. (These reactions are described in the Supporting Information.) The substituent on the β-carbon of enones $\mathbf{l b}$ - \mathbf{d} should retard conjugate addition of acetate so that enolization from the α^{\prime}-carbon is the exclusive reaction.

We had observed a single instance of conjugate addition of acetate in our study of oxidative cyclizations of alkenyl cyclohexenones. ${ }^{4}$ 6-(4-Pentenyl)-2-cyclohexenone (42) affords 24% of 10-acetoxybicyclo[5.3.1]undec-3-en-11-one (44) as the major product. The6-alkyl substituent slows down enolization at the α^{\prime}-position so that conjugate addition of acetate becomes the major pathway.
We investigated the oxidation of 1,2-cyclohexanedione (45) with $\mathrm{Mn}(\mathrm{OAc})_{3}$ as a model for proposed intermediate

[^5]
34. As expected, oxidation of 45 with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in HOAc at $80^{\circ} \mathrm{C}$ for 1 h affords 27% of 2,6-diacetoxy-2-cyclohexenone (46), which is analogous to 31, and 40\% of 2-acetoxyhexanedioic acid (47). Nikishin and coworkers reported a similar oxidation of 45 with CuCl_{2} and $\mathrm{H}_{2} \mathrm{O}_{2}$ that affords 2-chlorohexanedioic acid. ${ }^{21}$ Reaction of 45 with $\mathrm{Ac}_{2} \mathrm{O}$ in HOAc provides 2-acetoxy-2cyclohexenone (48). Oxidation of 48 and 7 a with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in HOAc at $80^{\circ} \mathrm{C}$ for 20 h provides 11% of dihydrobenzofuran-7-yl acetate 33aa, indicating that 2-acetoxy-2-cyclohexenones 34 and 48 are competent intermediates for the formation of 33a.

The formation of 2-acetoxyhexanedioic acids as significant products from the oxidation of 2-cyclohexenones with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in HOAc explains the modest yields of 6 -acetoxy-2-cyclohexenones 4 obtained by Williams and Hunter in acetic acid. ${ }^{1}$ Higher yields of $\mathbf{4}$ were obtained by Watt and Demir in benzene because conjugate addition of acetate does not occur in this solvent and no hexanedioic acids are formed.

There are several advantages to carrying out these oxidative cycloadditions in benzene and one benefit to carrying them out in acetic acid. Conjugate addition of acetic acid does not occur in benzene so that no material is converted to diacid, and regioisomers and dihydroben-zofuran-7-yl acetate 33 are not obtained. Benzylic oxidation does not occur as readily in benzene, so that overoxidized products such as dihydrobenzofuran- 3 -yl acetates $\mathbf{2 6}$ and $\mathbf{4 1}$ are not obtained. On the other hand, terminal alkenes can be used in acetic acid but not in benzene since secondary radical 23ab cyclizes to afford 24ab which is then oxidized to provide 25ab only in acetic acid.

Oxidative cycloaddition of α-tetralone (16) with 7a and 6 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in HOAc at $80^{\circ} \mathrm{C}$ for 15 h affords 19\% of 2 -acetoxy- α-tetralone, 24% of the naphthofuranone derived from oxidation of $\mathbf{1 7}, 15 \%$ of alkenyltetralone 18, and 19\% of naphthoquinone $\mathbf{5 0}$. Similar products are obtained in comparable yields from isobutene. Dihydronaphthofuran $\mathbf{1 7}$ is formed and undergoes rapid benzylic oxidation to give the naphthofuranone since the naphthalene ring is more readily oxidized than a benzene ring. ${ }^{22}$

[^6]

The formation of naphthoquinone $\mathbf{5 0}$ was not expected. We established the structure of the analogue obtained from isobutene by comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data with literature data. 23,24 These naphthoquinones are readily available by [$3+2$] photoaddition of 2-hydroxy-1,4-naphthoquinone (Iawsone, 49) with alkynes or with alkenes followed by air oxidation. ${ }^{23}$ We thought that α-tetralone $\mathbf{1 6}$ might be oxidized by Mn $(\mathrm{OAC})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ to give 49, which could undergo oxidative cycloaddition with alkenes to give 50. As expected, oxidative cycloaddition of 49 with $\mathbf{7 a}$ and 4 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in HOAc at $80^{\circ} \mathrm{C}$ for 15 h affords 95% of $\mathbf{5 0}$. Oxidative cycloaddition of lawsone with alkenes thus provides an alternative to the photochemical route developed by Suginome. ${ }^{23}$ Oxidative cycloaddition of β-tetralone with $\mathbf{7 a}$ in acetic acid provides 20% of $\mathbf{5 0}$ as the only isolable product, suggesting that β-tetral one is also oxidized to lawsone by $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Conclusion. Oxidative cycloaddition of a 2 -cyclohexenone or α-tetral one and an alkene with dried $\mathrm{Mn}(\mathrm{OAc})_{3}$ in benzene at $80-140^{\circ} \mathrm{C}$ provides a general route to dihydrobenzofurans $\mathbf{1 5}$ and dihydronaphthofurans 17. Although the yiel ds are modest, this one-step reaction provides simple access to these compounds, which have previously been prepared by multistep routes. Oxidative cycloaddition of 2-cyclohexenones with β-methylstyrenes provides a new route to benzofuranoid neolignans, which was applied to the synthesis of conocarpan (22). The formation of 2-acetoxyhexanedioic acids 27 and 47 from acetoxylation of 2-cyclohexenones in HOAC, but not in benzene, opens up a new class of $\mathrm{Mn}(\mathrm{OAc})_{3}$ reactions and explains Watt and Demir's discovery that much higher yields of α^{\prime}-acetoxyenones are obtained in benzene than in HOAc.

Experimental Section

General Procedures. NMR spectra were recorded at 300 MHz in CDCl_{3}. Chemical shifts are reported in δ (ppm) and coupling constants in hertz. IR spectra are reported in cm^{-1}.

Oxidative Cycloaddition of 2-Cyclohexenone (1a) with Methylenecyclohexane (7a) in Benzene. A solution of 1a $(107 \mathrm{mg}, 1.11 \mathrm{mmol}), 7 \mathrm{a}(213 \mathrm{mg}, 2.22 \mathrm{mmol})$, and $\mathrm{Mn}(\mathrm{OAc})_{3}$ $(1.03 \mathrm{~g}, 4.44 \mathrm{mmol})$ in 10 mL of benzene was refluxed at $80^{\circ} \mathrm{C}$ for 3 d . Saturated NaHSO_{3} solution was added and the mixture was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with saturated NaCl solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to provide 191 mg of crude product, which was purified by flash chromatography on silica gel ($50: 1$ hexane/EtOAc, then 10:1 hexane/EtOAc) to yield 88 mg (42%) of 15aa, followed by 37 mg (18\%) of 12aa.

The data for 12aa: ${ }^{1} \mathrm{H}$ NMR 6.93 (dddd, $1, \mathrm{~J}=10.1,5.3$, 4.4, 0.7), 5.99 (ddd, $1, \mathrm{~J}=10.1,2.1,2.0$), 5.43 (br s, 1), 2.56 (br d, 1, J $=15$), 2.47-2.30 (m, 3), 2.10-1.87 (m, 5), 1.711.50 (m, 6); ${ }^{13} \mathrm{C}$ NMR 201.8, 149.7, 134.9, 129.4, 123.6, 44.2, 37.6, 27.8, 26.7, 25.3, 24.7, 22.9, 22.4; IR (neat) 1715, 1673, 1443, 1219.

[^7]The data for 15aa: ${ }^{1} \mathrm{H}$ NMR 7.12 (br d, 1, J = 7.4), 7.09 (br $\mathrm{dd}, 1, \mathrm{~J}=8.0,7.4), 6.79(\mathrm{br} \mathrm{dd}, 1, \mathrm{~J}=7.4,7.4), 6.74$ (br d, 1 , $\mathrm{J}=8.0), 2.96(\mathrm{~s}, 2), 1.85-1.40(\mathrm{~m}, 10)$; ${ }^{13} \mathrm{C}$ NMR 158.9, 127.8 , 126.8, 125.1, 119.7, 109.5, 88.4, 41.0, 37.2 (2 C), 25.2, 23.1 (2 C); IR (neat) 1597, 1481, 1240, 747. The data are identical to those previously reported. ${ }^{5}$

Oxidative Cycloaddition of 3-Methyl-2-cyclohexenone (1b) with 7a in Benzene. A solution of $\mathbf{1 b}$ ($101 \mathrm{mg}, 0.92$ mmol), 7 a ($176 \mathrm{mg}, 1.84 \mathrm{mmol}$), and $\mathrm{Mn}(\mathrm{OAc})_{3}(852 \mathrm{mg}, 3.67$ mmol) in 10 mL of benzene was refluxed at $80^{\circ} \mathrm{C}$ for 3 d . Normal workup and flash chromatography on silica gel (50:1 hexane/EtOAc, 10:1 hexane/EtOAc, then 3:1 hexane/EtOAc) gave 58 mg (31%) of 15ba, followed by 22 mg (12\%) of 6-(1cycl ohexenylmethyl)-3-methyl-2-cyclohexenone (12ba) and 23 $\mathrm{mg}(23 \%)$ of recovered $\mathbf{1 b}$.

The data for 12ba: ${ }^{1} \mathrm{H}$ NMR 5.85 (br dd, $1, \mathrm{~J}=2.7,1.3$), 5.42 (br s, 1), 2.54 (br d, 1, J = 14.9), 2.38-2.24 (m, 3), 2.09$1.82(\mathrm{~m}, 5), 1.95(\mathrm{~s}, 3), 1.68-1.49$ (m, 6); ${ }^{13}$ C NMR 201.7, 161.5, 135.2, 126.2, 123.4, 43.1, 37.7, 29.8, 27.8, 26.6, 25.3, 24.1, 22.9, 22.4; IR (neat) 1669, 1638, 1438, 1379, 1210.

The data for 15ba: ${ }^{1} \mathrm{H}$ NMR $7.00(\mathrm{~d}, 1, \mathrm{~J}=7.5), 6.61(\mathrm{~d}, 1$, $\mathrm{J}=7.5), 6.58(\mathrm{~s}, 1), 2.92(\mathrm{~s}, 2), 2.29(\mathrm{~s}, 3), 1.80-1.47(\mathrm{~m}, 10)$; ${ }^{13} \mathrm{C}$ NMR 159.0, 137.9, 124.7, 123.8, 120.4, 110.2, 88.6, 40.7, $37.2,25.2,23.1,21.5 ;$ IR (neat) 1622, 1590, 1499, 1448, 1275, 1250, 1032, 946, 796.

Oxidative Cycloaddition of 3-Ethoxy-2-cyclohexenone (1c) with 7b in Benzene. A solution of $\mathbf{1 c}(115 \mathrm{mg}, 0.82$ mmol), 7 a ($158 \mathrm{mg}, 1.64 \mathrm{mmol}$), and $\mathrm{Mn}(\mathrm{OAc})_{3}(762 \mathrm{mg}, 3.38$ mmol) in 10 mL of benzene was refluxed at $80^{\circ} \mathrm{C}$ for 3 d . Normal workup and flash chromatography on silica gel (50:1 hexane/EtOAc, 15:1 hexane/EtOAc, then 1:1 hexane/EtOAc) gave 74 mg (39\%) of 6-ethoxyspiro[benzofuran-2(3H), 1'-cyclohexane] ($\mathbf{1 5 c a}$), followed by 4 mg (2\%) of 6 -(1-cyclohexenyl-methyl)-3-ethoxy-2-cycl ohexenone (12ca), and 50 mg (43\%) of recovered 1c.

The data for 12ca: ${ }^{1} \mathrm{H}$ NMR 7.54 ($\mathrm{d}, 1, \mathrm{~J}=8.6$), 6.60 (dd, 1 , $\mathrm{J}=2.2,8.6$), $6.51(\mathrm{~d}, 1, \mathrm{~J}=2.2), 4.10(\mathrm{q}, 2, \mathrm{~J}=7.0), 1.81-$ $1.55(\mathrm{~m}, 10), 1.45(\mathrm{t}, 3, \mathrm{~J}=7.0)$; ${ }^{13} \mathrm{C}$ NMR 201.8, 173.6, 167.6, $125.7,113.0,111.8,96.6,90.6,64.2,31.7,24.6,21.7,14.5$; IR (neat) 1709, 1613, 1447, 1292, 1179, 1097.

The data for 15ca: ${ }^{1} \mathrm{H}$ NMR 6.97 (br d, 1, J $=8.5$), 6.35 (dd, 1, J = 8.5, 2.0), $6.34(\mathrm{~d}, 1, \mathrm{~J}=2)$, $3.97(\mathrm{q}, 2, \mathrm{~J}=7.0), 2.89$ ($\mathrm{s}, 2$), 1.86-1.45 (m, 10), 1.37 (t, 3, J = 7.0); ${ }^{13} \mathrm{C}$ NMR 160.3, $160.0,125.4,118.9,106.4,97.0,89.8,63.9,40.7,37.5,25.5,23.4$, 15.2; IR (neat) 1621, 1495, 1446, 1294, 1168, 1038, 969, 926.

Oxidative Cycloaddition of Ethyl 2-Methyl-4-0xo-2cyclohexenecarboxylate (1d) with 7a in Benzene. A solution of $1 \mathbf{d}(121 \mathrm{mg}, 0.66 \mathrm{mmol}), 7 \mathrm{a}(128 \mathrm{mg}, 1.33 \mathrm{mmol})$, and $\mathrm{Mn}(\mathrm{OAc})_{3}(617 \mathrm{mg}, 2.66 \mathrm{mmol})$ in 10 mL of benzene was refluxed at $80^{\circ} \mathrm{C}$ for 3 d . Normal workup and flash chromatography on silica gel ($25: 1$ hexane/EtOAc, then $3: 1$ hexane/ EtOAc) gave 34 mg (25%) of ethyl 6 -methyl spiro[benzofuran2(3H), 1'-cycl ohexane]-5-carboxylate (15da), followed by 62 mg (51\%) of recovered $\mathbf{1 c}$.

The data for 15da: ${ }^{1} \mathrm{H}$ NMR 7.77 (s, 1), 6.59 ($\mathrm{s}, 1$), 4.30 (q , $2, \mathrm{~J}=7.1$), $2.93(\mathrm{~s}, 2), 2.56(\mathrm{~s}, 3), 1.85-1.70(\mathrm{~m}, 4), 1.70-1.60$ $(\mathrm{m}, 2), 1.60-1.45(\mathrm{~m}, 4), 1.37(\mathrm{t}, 3, \mathrm{~J}=7.1)$; ${ }^{13} \mathrm{C}$ NMR 167.4, 162.1, 142.4, 128.0, 124.4, 121.2, 112.4, 90.2, 60.1, 40.3, 37.1, 25.1, 23.0, 22.5, 14.4; IR (neat) 1712, 1621, 1583, 1494, 1257.

Oxidative Cycloaddition 5-Methyl-2-cyclohexenone (1e) with 7a in Benzene. A solution of le $92 \mathrm{mg}, 0.84$ $\mathrm{mmol}), 7 \mathrm{a}(160 \mathrm{mg}, 1.66 \mathrm{mmol})$, and $\mathrm{Mn}(\mathrm{OAc})_{3}(770 \mathrm{mg}, 3.32$ mmol) in 10 mL of benzene was refluxed at $80^{\circ} \mathrm{C}$ for 3 d . Normal workup and flash chromatography on silica gel (50:1 hexane/EtOAc, then $15: 1$ hexane/EtOAc) gave $70 \mathrm{mg}(41 \%)$ of 15ea, followed by 18 mg (9\%) of 6-(1-cyclohexenylmethyl)-5-methyl-2-cyclohexenone (12ea) as a 3:2 trans/cis mixture and 3 mg (3\%) of recovered $\mathbf{1 e}$.

The data for 12ea: ${ }^{1} \mathrm{H}$ NMR $6.80(\mathrm{~m}, 1), 5.96(\mathrm{br} \mathrm{d}, \mathrm{J}=10.0)$, 5.46 (br s, 0.6×1), $5.41(\mathrm{br} \mathrm{s}, 0.4 \times 1), 2.60-1.80(\mathrm{~m}, 10)$, $1.70-1.50(\mathrm{~m}, 4), 1.05(\mathrm{~d}, 0.6 \times 3, \mathrm{~J}=6.9), 0.92(\mathrm{~d}, 0.4 \times 3$, J $=6.9$); ${ }^{13}$ C NMR (202.1, 202.0), (147.3, 146.9), (135.1, 134.9), (129.2, 128.4), (123.7, 123.3), (51.4, 49.5), (38.1, 37.3), (33.7, $33.3),(31.5,31.1),(27.97,27.90),(25.3,25.3),(22.92,22.88)$, (22.43, 22.37), (19.8, 14.2).

The data for 15ea: ${ }^{1} \mathrm{H}$ NMR 7.00 (dd, $1, \mathrm{~J}=7.6 .7 .6$), 6.62 $(\mathrm{d}, 1, \mathrm{~J}=7.6), 6.58(\mathrm{~d}, 1, \mathrm{~J}=7.6), 2.87(\mathrm{~s}, 2), 2.21(\mathrm{~s}, 3), 1.86-$
1.51 (m, 10); ${ }^{13} \mathrm{C}$ NMR 158.5, 134.9, 127.7, 125.6, 120.7, 106.7, 88.1, 39.9, 37.3, 25.2, 23.1, 18.8; IR (neat) 1614, 1599, 1460, 1275, 1023, 932, 767.

Oxidative Cycloaddition of $\mathbf{1 6}$ with 7a in Benzene. A solution of $16(100 \mathrm{mg}, 0.68 \mathrm{mmol}), 7 \mathrm{a}(132 \mathrm{mg}, 1.36 \mathrm{mmol})$, and $\mathrm{Mn}(\mathrm{OAc})_{3}(636 \mathrm{mg}, 2.72 \mathrm{mmol})$ in 10 mL of benzene was refluxed at $80^{\circ} \mathrm{C}$ for 3 d . Normal workup and flash chromatography on silica gel ($50: 1$ hexane/EtOAc, then 15:1 hexane/ EtOAc) gave 74 mg (45\%) of spiro[cyclohexane-1, $2^{\prime}\left(3^{\prime} \mathrm{H}\right)$ -naphtho[1,2-b]furan] (17), followed by 29 mg (18\%) of 18 and 26 mg (26\%) of recovered 16.

The data for 17: ${ }^{1} \mathrm{H}$ NMR 7.97 (m, 1), 7.77 (m, 1), 7.39 (m, 2), $7.32(\mathrm{~d}, 1, \mathrm{~J}=8.2), 7.28(\mathrm{~d}, 1, \mathrm{~J}=8.2), 3.12(\mathrm{~s}, 2), 1.97-$ 1.48 (m, 10); ${ }^{13}$ C NMR 154.2, 133.9, 127.8, 125.3, 124.8, 123.3, 121.7, 120.8, 119.3, 119.2, 89.3, 41.9, 37.4, 25.3, 23.0; IR (neat) 3056, 1944, 1814, 1684, 1581, 1516, 1445, 1378.

The data for 18: ${ }^{1} \mathrm{H}$ NMR 8.03 ($\mathrm{d}, 1, \mathrm{~J}=7.8$), 7.46 (dd, $1, \mathrm{~J}$ $=7.8,7.6$), $7.30(\mathrm{dd}, 1, \mathrm{~J}=7.6,7.5), 7.24(\mathrm{~d}, 1, \mathrm{~J}=7.5), 5.47$ $(\mathrm{s}, 1), 3.00-2.93(\mathrm{~m}, 2), 2.72-2.58(\mathrm{~m}, 2), 2.22-1.47(\mathrm{~m}, 11)$; ${ }^{13}$ C NMR 200.4, 144.1, 135.1, 133.1, 132.5, 128.7, 127.5, 126.5, 123.7, 45.2, 38.0, 28.1, 27.9, 27.4, 25.3, 23.0, 22.5; IR (neat) 1682, 1600, 741.

Oxidative Cycloaddition of 1a with β-Methylstyrene (19a) in Benzene. A solution of 1a ($105 \mathrm{mg}, 1.10 \mathrm{mmol}$), 19a ($143 \mathrm{mg}, 1.21 \mathrm{mmol}$), and $\mathrm{Mn}(\mathrm{OAc})_{3}(1.02 \mathrm{~g}, 4.40 \mathrm{mmol})$ in 10 mL of benzene was refluxed at $80^{\circ} \mathrm{C}$ for 3 d . Normal workup and flash chromatography on silica gel (50:1 hexane/EtOAc, then $15: 1$ hexane/EtOAc) gave $69 \mathrm{mg}(42 \%)$ of unreacted 19a, followed by 46 mg (18\%) of a $93: 7$ mixture of trans-2,3-dihydro-3-methyl-2-phenylbenzofuran (20aa) and the cis isomer, and 2% of cinnamyl acetate.

The data for 20aa: ${ }^{1} \mathrm{H}$ NMR 7.45-7.30 (m, 5), 7.19 (br d, 1, $\mathrm{J}=7.4$), 7.15 (br dd, $1, \mathrm{~J}=8.0,7.4), 6.92(\mathrm{br} \mathrm{dd}, 1, \mathrm{~J}=7.4$, 7.4), 6.87 (br d, 1, J = 8.0), $5.16(\mathrm{~d}, 1, \mathrm{~J}=8.7), 3.44(\mathrm{dq}, 1, \mathrm{~J}$ $=8.7,6.8), 1.43(\mathrm{~d}, 3, \mathrm{~J}=6.8)$; ${ }^{13} \mathrm{C}$ NMR 159.2, 140.9, 131.9, 128.6 (2 C), 128.24, 128.18, 126.0 (2 C), 123.6, 120.8, 109.5, 92.4, 45.6, 18.1; IR (neat) 1597, 1478, 1432, 750.

Partial data for the cis isomer: ${ }^{1} \mathrm{H}$ NMR $5.81(\mathrm{~d}, 1, \mathrm{~J}=8.8)$, $3.70(\mathrm{~m}, 1), 0.81(\mathrm{~d}, 3, \mathrm{~J}=7.2)$.

Oxidative Cycloaddition of 1a with Anethole (19b) in Benzene. A solution of $1 \mathrm{la}(96 \mathrm{mg}, 1.00 \mathrm{mmol}$), anethole (150 $\mathrm{mg}, 1.01 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}(928 \mathrm{mg}, 4.00 \mathrm{mmol})$, and 8 mL of benzene was stirred in a sealed tube at $140^{\circ} \mathrm{C}$ for 2 d . Normal workup and flash chromatography on silica gel ($50: 1$ hexane/ EtOAc, then 10:1 hexane/EtOAc) gave 55 mg (37\%) of recovered trans-anethole, followed by 73 mg (31%) of a $50: 1$ mixture of trans-2,3-di hydro-2-(4-methoxyphenyl)-3-methylbenzofuran (20ab) and the cis isomer, and 8 mg (4\%) of 3-(4-methoxy-phenyl)-2(E)-propenyl acetate.
The data for 20ab: ${ }^{1} \mathrm{H}$ NMR 7.35 ($\mathrm{d}, 2, \mathrm{~J}=8.7$), 7.16 (dd, $1, \mathrm{~J}=6.9,6.1), 7.13(\mathrm{~d}, 1, \mathrm{~J}=6.9), 6.90(\mathrm{~d}, 2, \mathrm{~J}=8.7), 6.88-$ $6.94(\mathrm{~m}, 1), 6.84(\mathrm{~d}, 1, \mathrm{~J}=8.3), 5.09(\mathrm{~d}, 1, \mathrm{~J}=8.9), 3.79(\mathrm{~s}, 3)$, 3.43 (dq, 1, J $=8.9,6.8$), 1.39 (d, 3, J = 6.8); ${ }^{13} \mathrm{C}$ NMR 160.0, $159.5,133.1,132.4,128.6,128.0,124.0,121.0,114.4,109.8$, 92.7, 55.7, 45.7, 18.2; IR (neat) 1614, 1514, 1478, 1376, 1249.

Partial data for the cis isomer: ${ }^{1} \mathrm{H}$ NMR 5.75 ($\mathrm{d}, 1, \mathrm{~J}=8.7$), 0.82 ($\mathrm{d}, 3, \mathrm{~J}=8.3$).

Preparation of 4-(3-Chloropropyl)-2-cyclohexenone (1g). ${ }^{15}$ To a solution of diisopropylamine ($0.9 \mathrm{~mL}, 7.00 \mathrm{mmol}$) in 5 mL of dry THF at $0^{\circ} \mathrm{C}$ under N_{2} was added n -butyllithium solution (2.5 M in hexane, $2.5 \mathrm{~mL}, 6.25 \mathrm{mmol}$). After 15 min at $0^{\circ} \mathrm{C}$, the solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and 3 -ethoxy-2cyclohexenone ($712 \mathrm{mg}, 5.08 \mathrm{mmol}$) in 2.5 mL of THF was added dropwise over 30 min . The solution was warmed to -40 ${ }^{\circ} \mathrm{C}$, and HMPA ($1.25 \mathrm{~g}, 6.98 \mathrm{mmol}$) in THF and then 1-chloro-3-iodopropane ($1.43 \mathrm{~g}, 7.01 \mathrm{mmol}$) were added. The mixture was warmed to rt over 1.5 h and then stirred at rt for additional 2 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, and the mixture was extracted with hexane ($2 \times 10 \mathrm{~mL}$). The combined organic layers were washed with saturated NaCl solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to provide 1.3 g of crude product.

The above product in 10 mL of dry THF was added dropwise to lithium al uminum hydride solution (1.0 M in THF , 4.6 mL , 4.60 mmol) under N_{2} at $0^{\circ} \mathrm{C}$. The mixture was warmed to rt and then held at rt for 1 h . Water (0.1 mL , then 5 mL) and then 2 N HCl solution (to adjust the pH to 2) were added. After

20 min of stirring, the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 20 \mathrm{~mL}$). The combined organic layers were washed with saturated NaHCO_{3} solution and NaCl solution and dried $\left(\mathrm{Na}_{2}-\right.$ SO_{4}). Evaporation fol lowed by flash chromatography on silica gel gave $454 \mathrm{mg}(52 \%)$ of $\mathbf{1 g}$: ${ }^{1} \mathrm{H}$ NMR 6.86 (ddd, $1, \mathrm{~J}=10.2$, $2.7,1.4), 5.99$ (ddd, 1, J = 10.2, 2.4, 0.7), 3.59 (dd, $2, \mathrm{~J}=6.5$, $6.5), 2.57-2.32(\mathrm{~m}, 3), 2.19-2.10(\mathrm{~m}, 1), 1.94-1.85(\mathrm{~m}, 2)$, $1.79-1.52$ (m, 3); ${ }^{13}$ C NMR 199.2, 154.0, 129.0, 44.5, 36.6, 35.2, 31.5, 29.6, 28.2; IR (neat) 1678.

Oxidative Cycloaddition $\mathbf{1 g}$ with 19b in Benzene. A solution of $\mathbf{1 g}(96 \mathrm{mg}, 0.56 \mathrm{mmol})$, trans-anethole ($83 \mathrm{mg}, 0.56$ $\mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}(518 \mathrm{mg}, 2.23 \mathrm{mmol})$, and 5 mL of benzene was stirred at $110{ }^{\circ} \mathrm{C}$ for 1.5 d . Normal workup and flash chromatography on silica gel (50:1 hexane/EtOAc) gave 26 mg (31\%) of recovered anethole, followed by 43 mg (24.5\%) of 5-(3-chloropropyl)-2,3-di hydro-2-(4-methoxyphenyl)-3-methylbenzofuran (20gb) as a 50:1 trans/cis mixture and 31 mg (32\%) of recovered $\mathbf{1 g}$.

The data for 20gb: ${ }^{1} \mathrm{H}$ NMR 7.35 (dt, 2, J = 8.6, 1.9), 6.96 (d, 1, J = 7.8), 6.96 (s, 1), 6.91 (dt, 2, J = 8.6, 1.9), 6.76 (d, 1, $\mathrm{J}=7.8$), $5.08(\mathrm{~d}, 1, \mathrm{~J}=9.2), 3.81(\mathrm{~s}, 3), 3.54(\mathrm{dd}, 2, \mathrm{~J}=6.5$, 6.5), 3.40 (dq, 1, J = 9.2, 6.8), 2.73 (dd, 2, J = 7.5, 7.5), 2.06 (dddd, $2, \mathrm{~J}=6.5,6.5,7.5,7.5$), $1.38(\mathrm{~d}, 3, \mathrm{~J}=6.8) ;{ }^{13} \mathrm{C}$ NMR $160.0,157.9,133.4,133.0,132.6,128.5,128.0,124.0,114.3$, 109.5, 92.9, 55.7, 45.7, 44.7, 34.9, 32.6, 18.0; IR (neat) 1613, 1515, 1487, 1242.

Preparation of trans-2,3-Dihydro-2-(4-methoxyphen-yl)-3-methyl-5-(1(E)-propenyl)benzofuran (21). A solution of $\mathbf{2 0 g b}$ ($16 \mathrm{mg}, 0.051 \mathrm{mmol}$) in 2 mL of dry THF and 1.0 M KO-t-Bu in THF (0.12 mL) was refluxed at $67^{\circ} \mathrm{C}$ for 4 h . After the THF evaporated, the viscous residue was stirred at $70^{\circ} \mathrm{C}$ for an additional 3 h . NaOH solution ($1 \mathrm{~N}, 3 \mathrm{~mL}$) was added, and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried ($\mathrm{Na}_{2}-$ SO_{4}), and concentrated. Purification of the residue by chromatography on silica gel ($50: 1$ hexane/EtOAc) gave 13 mg (92\%) of 21: ${ }^{1} \mathrm{H}$ NMR 7.35 (dt, 2, J = 8.7, 2.0), 7.14 (s, 1), 7.12 ($\mathrm{d}, 1, \mathrm{~J}=8.1$), $6.91(\mathrm{dt}, 2, \mathrm{~J}=8.7,2.0), 6.76(\mathrm{~d}, 1, \mathrm{~J}=8.1)$, 6.36 (dd, 1, J = 15.7, 1.5), 6.09 (dq, 1, J = 15.7, 6.6), 5.09 (d, $1, \mathrm{~J}=8.8$), $3.81(\mathrm{~s}, 3), 3.40(\mathrm{dq}, 1, \mathrm{~J}=8.8,6.8), 1.86(\mathrm{dd}, 3, \mathrm{~J}$ $=6.6,1.6$), 1.39 ($d, 3, \mathrm{~J}=6.8$); ${ }^{13}$ C NMR 159.6, 158.3, 132.6, 132.4, 131.2, 130.7, 127.6, 126.3, 123.0, 120.7, 114.0, 109.3, 92.6, 55.3, 45.2, 18.4, 17.8; IR (neat) 1612, 1515, 1486, 1241.

Synthesis of Conocarpan (22). n-Butyllithium (2.5 M in hexane, $0.06 \mathrm{~mL}, 0.15 \mathrm{mmol}$) was added dropwise to a solution of diphenyl phosphine ($0.02 \mathrm{~mL}, 0.12 \mathrm{mmol}$) in THF (0.2 mL) under N_{2} at $0^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min , and $\mathbf{2 1}(10 \mathrm{mg}, 0.035 \mathrm{mmol})$ in 0.1 mL of THF was added. The mixture was warmed to rt and stirred at rt for $4 \mathrm{~h} . \mathrm{NaOH}$ solution ($2 \mathrm{~N}, 5 \mathrm{~mL}$) was added, and the solution was extracted with hexane ($3 \times 3 \mathrm{~mL}$) which was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography of the residue on silica gel ($50: 1$ hexane/EtOAc) gave 0.6 mg (6%) of recovered 21. The basic aqueous layer was cooled in an ice bath and acidified by 4 N HCl solution to $\mathrm{pH}=3-4$. The cloudy solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with saturated NaCl solution, dried ($\mathrm{Na}_{2}-$ SO_{4}), and concentrated. Flash chromatography of the residue on silica gel provided 7.8 mg (84%) of 22: ${ }^{1} \mathrm{H}$ NMR 7.30 (dt, 2, $\mathrm{J}=8.6,2.0$), $7.14(\mathrm{~s}, 1), 7.12(\mathrm{~d}, 1, \mathrm{~J}=8.3), 6.83(\mathrm{dt}, 2, \mathrm{~J}=$ 8.6, 2.0), 6.76 (d, 1, J $=8.3$), 6.37 (dd, 1, J = 15.7, 1.6), 6.09 (dq, 1, J = 15.7, 6.6), 5.09 (d, 1, J = 8.8), $4.95(\mathrm{~s}, 1, \mathrm{OH}), 3.39$ (dq, $1, \mathrm{~J}=8.8,6.8$), 1.86 (dd, $3, \mathrm{~J}=6.6,1.6$), $1.39(\mathrm{~d}, 3, \mathrm{~J}=$ $6.8) ;{ }^{13} \mathrm{C}$ NMR 158.2, 155.6, 132.9, 132.3, 131.2, 130.7, 127.9, 126.3, 123.0, 120.7, 115.4, 109.3, 92.6, 45.2, 18.4, 17.8; IR (neat) 3394 (OH), 1613, 1605, 1516, 1486, 1239.

Oxidative Cycloaddition of 2-Cyclohexenone (1a) with 1-Octene ($\mathbf{7 b}$) in HOAc. A solution of $\mathbf{1 a}$ ($48 \mathrm{mg}, 0.50 \mathrm{mmol}$), 7b ($84 \mathrm{mg}, 0.75 \mathrm{mmol}$), and $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(536 \mathrm{mg}, 2.00$ mmol) in 5 mL of HOAc was stirred under N_{2} at $80^{\circ} \mathrm{C}$ for 16 h. Water (20 mL) and saturated NaHSO_{3} solution (10 mL) were added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 20 mL). The combined organic layers were washed with saturated NaHCO_{3} solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to provide 138 mg of crude product, which was purified by flash chromatography on silica gel (20:1 hexane/ EtOAc) to yield 25 mg (24\%) of 2,3-di hydro-2-hexylbenzofuran
(15ab), followed by 1 mg (1\%) of a $1: 1$ mixture of 2,3 -dihydro-2-hexylbenzofuran-7-yl acetate (33ab) and 2-(2-octenyl)-2cyclohexenone (38ab), and 21 mg (27\%) of 6-acetoxy-2-cyclohexen-1-one (4a). ${ }^{25}$

The data for 15ab: ${ }^{1} \mathrm{H}$ NMR 7.14 (br d, 1, J = 7.3), 7.09 (br dd, $1, \mathrm{~J}=8.0,7.4$), 6.81 (br dd, $1, \mathrm{~J}=7.4,7.3$), 6.76 (br d, 1 , $\mathrm{J}=8.0), 4.76(\mathrm{~m}, 1), 3.26(\mathrm{dd}, 1, \mathrm{~J}=15.4,9.0), 2.85(\mathrm{dd}, 1, \mathrm{~J}$ $=15.4,7.9$), $1.85-1.25(\mathrm{~m}, 10), 0.89(\mathrm{t}, 3, \mathrm{~J}=6.7) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ 159.6, 127.9, 127.0, 124.9, 120.0, 109.2, 83.4, 36.1, 35.5, 31.8, 29.2, 25.4, 22.6, 14.1; IR (neat) 1599, 1482, 1233, 749.

Oxidation of 5-Methyl-2-cyclohexenone (1e). A solution of $\mathbf{l e}(93 \mathrm{mg}, 0.85 \mathrm{mmol})$ and $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(679 \mathrm{mg}, 2.54$ mmol) in 8 mL of HOAc was stirred at $80^{\circ} \mathrm{C}$ for 5 h . Workup as described above for the oxidation of $\mathbf{1 a}$ and $\mathbf{7 b}$ in HOAc provided 63 mg (44\%) of 6-acetoxy-5-methyl-2-cycl ohexenone (4e) as a 1:1 trans/cis mixture in the organic layer and 39 mg (20\%) of a 4:1 mixture of 27a and 28b (2-acetoxy-4-methylhexanedioic acid) in the water layer. Flash chromatography of $\mathbf{4 e}$ gave 5 mg of pure trans-4e followed by a mixture of isomers.

The data for trans-4e: ${ }^{1} \mathrm{H}$ NMR 6.95 (ddd, $1, \mathrm{~J}=10.1,6.1$, 2.0), 6.06 (dd, $1, \mathrm{~J}=10.1,2.0$), 5.11 (d, $1, \mathrm{~J}=12.7$), 2.58 (ddd, $1, \mathrm{~J}=18,6.2,3.1$), 2.51-2.26 (m, 2), 1.55 (s, 3), 1.11 (d, 3, J $=6.1$); ${ }^{13} \mathrm{C}$ NMR 193.8, 170.4, 149.1, 128.3, 79.1, 35.7, 34.4, 20.8, 19.1.

The data for cis-4e: ${ }^{1} \mathrm{H}$ NMR 6.85 (dddd, $1, \mathrm{~J}=10.0,5.4$, 2.7, 1.2), 6.05 (ddd, 1 , J = 10.0, 2.7, 2.7), 5.51 (d, 1 , J $=3.8$), 2.80 (dddd, 1, J = 19.2, 5.4, 2.7, 2.7), 2.63-2.52 (m, 1), 2.36 (br d, 1, J = 19.2); ${ }^{13} \mathrm{C}$ NMR 193.8, 170.4, 147.5, 128.3, 79.1, 33.6, 33.0, 21.1, 13.2.

The data for 27a: ${ }^{1} \mathrm{H}$ NMR 9.60-9.00 (br s, 2, OH), 5.08 (dd, 1, J = 10.4, 3.4), 2.39 (dd, 1, J = 15.3, 6.3), 2.30 (dd, 1, J $=15.3,7.2$), 2.22-2.00 (m, 1), $2.09(\mathrm{~s}, 3), 1.97$ (ddd, 1, J $=$ $14.2,10.4,4.2$), 1.79 (ddd, $1, \mathrm{~J}=14.2,9.5,3.4), 1.04(\mathrm{~d}, 3, \mathrm{~J}=$ $6.4) ;{ }^{13} \mathrm{C}$ NMR 179.5, 175.9, 170.8, 70.0, 41.4, 37.1, 26.7, 20.8, 18.9; IR (neat) 3471, 1726, 1377, 1232, 1075, 937.

Partial data for 27b: ${ }^{1} \mathrm{H}$ NMR 5.06 (dd, 1, J $=8.1,5.5$), 1.06 ($\mathrm{d}, 3, \mathrm{~J}=6.5$).

Esterification of 27. A solution of diazomethane in ether was added to 27 ($39 \mathrm{mg}, 0.20 \mathrm{mmol}$). The mixture was stirred and evaporated to provide 43 mg (99%) of a $4: 1$ mixture of 28a and 28b.

The data for 28a: ${ }^{1} \mathrm{H}$ NMR 5.06 (dd, $1, \mathrm{~J}=10.5,3.5$), 3.75 (s, 3), 3.68 (s, 3), 2.34 (dd, 1, J = 14.8, 6.2), 2.23 (dd, 1, J = 14.8, 7.4), 2.16-2.06 (m, 1), $2.15(\mathrm{~s}, 3), 1.92$ (ddd, $1, \mathrm{~J}=14.2$, 10.5, 4.3), 1.71 (ddd, 1 , J = 14.2, $9.4,3.4$), 1.00 (d, $3, \mathrm{~J}=6.5$); ${ }^{13}$ C NMR 172.7, 170.8, 170.5, 70.3, 52.3, 51.5, 41.5, 37.4, 26.8, 20.6, 18.8; IR (neat) 1732, 1438, 1373, 1224, 1082, 1009.

Partial data for 28b: ${ }^{1} \mathrm{H}$ NMR 5.03 (dd, 1, J = 8.1, 5.5), 3.75 ($\mathrm{s}, 3$), 3.67 ($\mathrm{s}, 3$), 1.02 (d, 3, J = 6.7).

Oxidative Cycloaddition of 2-Hydroxy-1,4-naphthoquinone (49) with 7a in HOAc. $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(890 \mathrm{mg}$, 3.32 mmol), 49 ($144 \mathrm{mg}, 0.83 \mathrm{mmol}$), and 7a ($180 \mathrm{mg}, 1.87$ mmol) were stirred in 8 mL of HOAc at $80^{\circ} \mathrm{C}$ for 15 h . Normal workup gave 137 mg (95\%) of 50: mp 189-200 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR 8.09-8.05 (m, 2), 7.75-7.63 (m, 2), 2.96 (s, 2), 1.89-1.49 (m, 10); ${ }^{13} \mathrm{C}$ NMR 182.7, 178.4, 159.2, 134.0, 133.1, 132.8, 131.6, $126.2,125.9,123.3,94.2,38.0,37.0,24.7,22.7$; IR (KBr) 1682, 1639, 1622, 1593.

Acknowledgment. Financial assistance provided by the National Institutes of Health is gratefully acknowledged.

Supporting Information Available: Experimental procedures for other oxidative cycloadditions in HOAc , and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds (64 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.
J 09708506
(25) Rubottom, G. M.; Gruber, J . M. J . Org. Chem. 1978, 43, 1599.

[^0]: ${ }^{\otimes}$ Abstract published in AdvanceACS Abstracts, September 1, 1997.
 (1) Williams, G. J.; Hunter, N. R. Can. J . Chem. 1976, 54, 3830.
 (2) For reviews of $\mathrm{Mn}(\mathrm{OAC})_{3}$ as an oxidant, see: (a) Snider, B. B. Chem. Rev. 1996, 96, 339. (b) Melikyan, G. G. In Organic Reactions; Paquette, L. A., Ed.; Wiley: New York, 1997; Vol. 49, Chapter 3.
 (3) (a) Dunlap, N. K.; Sabol, M. R.; Watt, D. S. Tetrahedron Lett. 1984, 25, 5839. (b) Demir, A. S.; J eganathan, A.; Watt, D. S. J . Org. Chem. 1989, 54, 4020. (c) Demir, A. S.; J eganathan, A. Synthesis 1992, 235.
 (4) Snider, B. B.; Kiselgof, E. Y. Tetrahedron 1996, 52, 6073.

[^1]: (5) (a) Antus, S.; Baitz-Gács, E.; Snatzke, G.; Vas, J . Tetrahedron 1986, 42, 5637. (b) Kaufman, T. S.; Sindelar, R. D. J. Heterocyd. Chem. 1989, 26, 879.
 (6) (a) Fristad, W. E.; Peterson, J. R.; Ernst, A. B.; Urbi, G. B. Tetrahedron 1986, 42, 3429. (b) Vinogradov, M. G.; Todres, Z. V.; II'ina, G. P.; Rutavichus, A. I.; Kursanov, D. N.; Nikishin, G. I. Bull. Acad. Sci. USSR 1976, 1278.
 (7) Murai, A.; Sato, S.; Masamune, T. Bull. Chem. Soc. J pn. 1984, 57, 2286.
 (8) Shulgin, A. T.; Baker, A. W. J. Org. Chem. 1963, 28, 2468.

[^2]: (9) Hayashi, T.; Thomson, R. H. Phytochemistry 1975, 14, 1085. Oxidative dimerization of p -(1E)-propenylphenol with FeCl_{3} affords 20% of conocarpan.
 (10) Achenbach, H.; Gross, J.; Dominguez, X. A.; Cano, G.; Verde Star, J.; Del Carmen Brussolo, L.; Muñoz, G.; Salgado, F.; López, L. Phytochemistry 1987, 26, 1159.
 (11) Chauret, D. C.; Bernand, C. B.; Arnason, J. T.; Durst, T.; Krishnamurty, H.; Sanchez-Vindas, P.; Moreno, N.; Roman, L. S.; Poveda, L. J . Nat. Prod. 1996, 59, 152.
 (12) Wang, S.; Gates, B. D.; Swenton, J . S. J . Org. Chem. 1991, 56, 1979 and references cited therein.
 (13) Engler, T. A.; Chai, W. Tetrahedron Lett. 1996, 37, 6969 and references cited therein.
 (14) (a) Schmid, E.; Fráter, Gy.; Hansen, H.-J .; Schmid, H. Helv. Chim. Acta 1972, 55, 1625. (b) Gregson, M.; Ollis, W. D.; Redman, B. T.; Sutherland, I. O.; Dietrichs, H. H. J. Chem. Soc., Chem. Commun. 1968, 1394. (c) Bowden, B. F.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1972, 25, 2659.

[^3]: (15) Stork, G.; Danheiser, R. L. J . Org. Chem. 1973, 38, 1775.
 (16) Grethe, G.; Lee, H. T.; Mitt, T.; Uskokovic, M. Helv. Chim. Acta 1973, 56, 1485.
 (17) Thach, L. N.; Hanh, D.-L.; Hiep, N. B.; Radhakrishna, A. S.; Singh, B. B.; Loupy, A. Synth. Commun. 1993, 23, 1379 and references cited therein.
 (18) Ireland, R. E.; Walba, D. M. In Organic Syntheses; Noland, W. E., Ed.; Wiley: New York, 1988; Collect. Vol. VI, pp 567-570.

[^4]: (19) Hurd, C. D.; Dowbenko, R. J. Am. Chem. Soc. 1960, 82, 3662.

[^5]: (20) Suemune, H.; Matsuno, K.; Uchida, M.; Sakai, K. Tetrahedron: Asymmetry 1992, 3, 297.

[^6]: (21) Starostin, E. K.; Mazupchick, A. A.; I gnatenko, A. V.; Nikishin, G. I. Synthesis 1992, 917.

[^7]: (22) Ross, S. D.; Finkelstein, M.; Rudd, E. J. Anodic Oxidation; Academic Press: New York, 1975; Chapters 5 and 12.
 (23) K obayashi, K.; Shimizu, H.; Sasaki, A.; Suginome, H. J . Org. Chem. 1993, 58, 4614.
 (24) Ferreira, C. A. C.; Ferreira, V. F.; Pinto, A. V.; Lopes, R. S. C.; Pinto, M. C. R.; Da Silva, A. J. R. An. Acad. Brasil. Cienc. 1987, 59, 5; Chem. Abstr. 1988, 108, 221435 w.

